Generalizing Sperner's lemma to a free module over a special principal ideal ring

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IRRELEVANT ATTACHED PRIME IDEALS OF A CERTAIN ARTINIAN MODULE OVER A COMMUTATIVE RING

Let M be an Artinian module over the commutative ring A (with nonzero identity) and a p spec A be such that a is a finitely generated ideal of A and aM = M. Also suppose that H = H where H. = M/ (0: a )for i

متن کامل

A note on a graph related to the comaximal ideal graph of a commutative ring

  ‎The rings considered in this article are commutative with identity which admit at least two maximal ideals‎.  ‎This article is inspired by the work done on the comaximal ideal graph of a commutative ring‎. ‎Let R be a ring‎.  ‎We associate an undirected graph to R denoted by mathcal{G}(R)‎,  ‎whose vertex set is the set of all proper ideals I of R such that Inotsubseteq J(R)‎, ‎where J(R) is...

متن کامل

Similarity Classes of 3× 3 Matrices over a Local Principal Ideal Ring

In this paper similarity classes of three by three matrices over a local principal ideal commutative ring are analyzed. When the residue field is finite, a generating function for the number of similarity classes for all finite quotients of the ring is computed explicitly.

متن کامل

Rings with Every Proper Image a Principal Ideal Ring

The main result of this paper states that if R is a right Noetherian right bounded prime ring such that nonzero prime ideals are maximal and such that every proper homomorphic image of R is a principal right ideal ring then R is right hereditary. In [10, Theorem 8] it is proved that if R is a right bounded prime ring of finite right Goldie dimension such that every proper homomorphic image is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Commutative Algebra

سال: 2012

ISSN: 1939-2346

DOI: 10.1216/jca-2012-4-3-345